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The axial dynamic response of a single pile in
clay is examined within the framework of a
Winkler-type approach. Experimental data for
the variation of soil shear modulus and hystere-
tic damping with the amplitude of shear strain
and the soil `plasticity' index are curve-®tted
and utilized in simulating in a realistic way the
non-linearity of the surrounding soil arising
from the stresses induced by the pile. An
equivalent radially-inhomogeneous but linearly-
hysteretic continuum is established, and the
`springs' and `dashpots' of the dynamic Winkler
model are obtained at each depth by solving
analytically the pertinent plane-strain (in z) and
axisymmetric (in r) elastodynamic problem.
Slippage at the pile±soil interface is also taken
into consideration in a simple approximate way.
Analytical results are presented to demonstrate
the practical signi®cance of soil non-linearity,
soil `plasticity' index and interface slippage in
the dynamic stiffness and damping of the pile.

KEYWORDS: dynamics; numerical modelling and
analysis; piles; soil=structure interaction; stiffness;
vibration.

Les auteurs examinent la reÂaction dynamique
axiale d'un pieu dans l'argile dans le contexte
d'une approche du type Winkler. ApreÁs l'ajuste-
ment de courbe, les donneÂes expeÂrimentales
obtenues pour la variation du module de cis-
aillement et de l'amortissement hysteÂreÂtique en
fonction de la deÂformation de cisaillement et de
l'indice de «plasticiteÂ» du sol sont utiliseÂes pour
simuler de facËon reÂaliste la non-lineÂariteÂ du sol
environnant sous l'effet des tensions engendreÂes
par le pieu. Un continuum eÂquivalent, non
homogeÁne radialement, mais hysteÂreÂtique lineÂ-
airement, est eÂtabli, et les «ressorts» et «amor-
tisseurs» du modeÁle dynamique de Winkler sont
obtenus aÁ chaque profondeur par reÂsolution
analytique du probleÁme eÂlastodynamique de la
deÂformation plane (en z) et axisymeÂtrique (en
r). On tient eÂgalement compte, de facËon ap-
proximative et simple, du glissement aÁ l'inter-
face pieu-sol. Les reÂsultats de l'analyse sont
preÂsenteÂs pour deÂmontrer les effets pratiques de
la non-lineÂariteÂ du sol, de l'indice de plasticiteÂ
du sol et du glissement interfacial sur la rigiditeÂ
dynamique et l'amortissement du pieu.

INTRODUCTION

A widely used method for evaluating the dynamic
axial response of piles replaces the soil sur-
rounding the pile with a series of independent
springs and dashpots (Winkler approach). This im-
plies that shear waves, emitted from the pile peri-
phery, propagate only horizontally and plane-strain
conditions prevail. Radial soil displacements are
neglected. Soil, therefore, deforms solely in pure
shearÐan assumption also used with success for
statically-loaded piles (Randolph & Wroth, 1978;
Baguelin & Frank, 1979), and for the dynamic
interaction of piles in a group (Dobry & Gazetas,
1988).

The frequency-dependent moduli of the (con-
tinuously distributed along the pile length) Winkler
springs and dashpots are obtained by solving the

elastodynamic problem of a unit-thickness soil
layer of in®nite lateral extent, containing an oscil-
lating rigid inclusion (the pile slice). Most solu-
tions are based on the additional simplifying
assumption that the soil is radially homogeneous.
This, however, may not be realistic even with
horizontally uniform soils, because the effective
(secant) modulus of the soil in the vicinity of the
pile will be reduced to lower than the free-®eld
values, owing to the comparatively large ampli-
tudes of the induced shear strains and the ensuing
non-linear soil response.

Novak & Sheta (1980) were the ®rst to propose
the use of a massless, narrow, annular boundary
zone around the pile, having a shear modulus Gin

smaller than the modulus Gs of the outer surround-
ing zone (i.e. of the free ®eld), and larger material
damping. The purpose of such a `soft' zone was to
account in an approximate way for both soil non-
linearity in the region of highest stresses and
slippage (and other `de®ciencies') at the pile±soil
interface (Novak, 1991; Pender, 1993). Neglecting
the mass of the boundary zone was necessary in
order to prevent wave re¯ections from the ®ctitious
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discontinuity at the interface between the cylindri-
cal zone and the outer region. On the other hand,
the solution, by Veletsos & Dotson (1986), in-
cluded the inertia of the boundary zone; hence the
resulting stiffness and damping exhibited undula-
tions with frequency. More appropriate continuous
(monotonically increasing) variations of modulus
with radial distance, G � G(r), assumed by
Gazetas & Dobry (1984a) and Veletsos & Dotson
(1988), eliminated the problem of the spurious
wave re¯ections at the interface between `boundary
zone' and the surrounding soil.

The previous contributions address the problem
of lateral soil heterogeneity with only qualitative
reference to the non-linear soil response, since the
variations of soil properties employed are merely
hypothetical. To aid practical applications, this
paper utilizes experimental data (e.g. Vucetic &
Dobry, 1991) on the dependence of the secant
shear modulus and hysteretic damping of soil on
the shear strain amplitude and the nature of the
soil (the latter represented by the plasticity index
IP). The variation of modulus and damping is then
related to the magnitude of the applied load
through the amplitude of the induced strains. Thus,
the radial inhomogeneity studied models the non-

linearity of soil in shear realistically (although
approximately). In addition, slippage at the pile±
soil interface is also modelled in a simple, realistic
way.

PROBLEM DEFINITION AND OUTLINE OF METHOD

The problem studied is that of a ¯oating cylind-
rical pile embedded in a layered soil deposit
and subjected to harmonic axial load at the top
(Fig. 1). Initially, before applying any static or
dynamic load, all soil layers are assumed to be
laterally homogeneous (Fig. 1(a)), implying that
any installation effects have `dissipated'. Applying
the static load, shear stresses ô0 develop on the
elements of each layer. To a good approximation,
ô0 is inversely proportional to the radial distance
from the pile (Randolph & Wroth, 1978).� A dy-
namic load Pc cosùt generates additional stresses
�ôc cos (ùt � è) on the soil elements (Fig. 2),
where ôc is the amplitude of the stresses and è is
the phase difference with respect to the applied

Fig. 1. Steps of the methodology developed in this paper and de®nition of the impedances k z and K v: (a) initial,
radially uniform distribution of shear modulus G � Gs for each horizontal layer; (b) and (c) attenuation with
increasing radial distance of the shear stress and shear strain amplitudes induced by load Pc cosù t; (d) strain-
compatible (`effective') shear modulus G � G(r; Pc, ù); (e) generalized Winkler-type reaction of each soil layer as
represented with a `spring' (kz) and a `dashpot' (cz), both functions of Pc and ù; (f) complete pile±soil system
represented with both Kv and Cv dependent on load-amplitude and frequency

� Notice, however, the slightly different notation in this
paper.
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load. Figs 1(b) and 1(c) schematically illustrate the
radial distribution of the amplitudes of cyclic shear
stress ôc and cyclic shear strain ãc. They both
depend, for a given soil and pile, on the amplitude
of the applied load (Pc) and the frequency of
excitation (ù).

The radial variation of shear strain greatly af-
fects the value of the secant (`effective') shear
modulus and the generated hysteretic damping of
the surrounding soilÐwith the modulus decreasing
and the damping increasing in the vicinity of the
pile. The soil now becomes, `effectively', radially
inhomogeneous (Fig. 1(d)). Experimental data for
clays are utilized in estimating the degree of this
`effective' inhomogeneity, and the elastodynamic
problem of the axisymmetric radially-inhomoge-
neous unbounded soil layer containing a vibrating
inclusion (the pile slice) is solved analytically. The
reaction of each soil layer is then represented with
a (frequency-dependent) `spring' and `dashpot', kz

and cz, as in Fig. 1(e). Finally, the total pile head
stiffness and damping Kv and Cv (Fig. 1(f)) are
obtained from the solution of the differential equa-
tion of motion of the (axially deformable) pile
continuously supported by the Winkler-type axial
`springs' and `dashpots' of Fig. 1(e). The effect of
slippage between the soil and the pile is also
examined in the paper, in an approximate way
(however, this is not shown in the ®gure).

DYNAMIC SHEAR STRESS DISTRIBUTION

In principle, the cyclic stress±strain response of
the soil depends on both the static (initial) and the
cyclic (induced) shear stresses. For low, moderate
and moderately high intensities of cyclic loading,
however, one may overlook the effect of static
shear stresses and focus solely on the effect of
cyclic shear stresses or strains. This argument is
suggested by the well known Masing (1926) criter-
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Fig. 2. (a) The fundamental approximation: shear waves from the shaft periphery propagate horizontally under
plane strain conditions; (b) variation of shear stress with time in cycling loading; (c) stress±strain behaviour of a
soil element under initial shear stress ô0 and a sinusoidal imposed cyclic shear stress of amplitude ôc; the
hysteresis loops developing after completion of the ®rst loading are essentially identical for two different initial
shear stresses ô0 and ô90
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ion for unloading±reloading of soils, illustrated in
Fig. 2. Only for the ®rst loading from ô0 to ô0 � ôc

does the resulting strain depend on ô0; thereafter
the loops depend solely on the size of ôc (or ãc).

This is also substantiated by experimental evi-
dence. For instance, Fig. 3 shows typical results
from cyclic direct simple shear tests on a clay
(Andersen, 1992), which clearly demonstrate that
the cyclic shear strain amplitude ãc (and thereby
the corresponding secant shear modulus G �
ôc=ãc) at different stages of cyclic loading remain
practically constant for the entire possible range of
static shear stresses ô0 and shear strains ã0, at least
for the numbers of loading cycles of interest in
earthquake engineering.

Evidently, the radial distributions of ôc, ãc and
G, sketched in Figs 1(b), 1(c) and 1(d), are inter-
dependent. For example, the distributions ôc �
ôc(r) and ãc � ãc(r) cannot be computed until the
soil modulus G � G(r) is already known; G(r),
however, is obtained from soil data only after the
distribution of strains ãc(r) is known.

Strictly speaking, the problem of determining ôc

(or ãc) and G can be solved only with an iterative
procedure. Fortunately, however, the radial distribu-
tion of shear stresses ôc(r) turns out to be quite
insensitive to variations in the radial distribution of
shear modulus G(r). This insensitivity is demon-
strated in Appendix 1, where the elastic stress
distributions ôc(r) for a (radially) homogeneous
and two radially inhomogeneous soil layers, com-
puted analytically (and rigorously), are shown to be
quite similar for most frequencies of practical
signi®cance.�

This observation simpli®es considerably the im-
plementation of the method of Fig. 1. The induced
shear stresses are obtained, a priori, for a homo-
geneous soil (i.e. without knowing the exact varia-
tion of G(r)). As shown in Appendix 1,

ôc(r) � ôc0

s
J2

1 a0

r
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in which R is the pile radius, ôc0 � ôc(R) is the
amplitude of the imposed cyclic shear stress at the
pile±soil interface,

a0 � ùR=Vs0 (1b)

Vs0 � Vs(R) is the S-wave velocity at r � R, J1

and Y1 are the ®rst-order Bessel functions of the
®rst and second kind respectively, and ù is the
circular frequency of the applied force.

Equation (1) can be simpli®ed to

ôc(r) � ôc0

R

r
F(ar) (2a)

where

F(ar) � 1 if ar , 1

F(ar) � ar
0:57 if ar . 1 (2b)
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Fig. 3. Static and cyclic shear stresses and resulting
strains in simple shear test on Drammen clay with
OCR � 1 (from Andersen, 1992); the solid curves are
nearly horizontal, implying insensitivity of cyclic
response to initial shear stress ô0

� This ®nding is reminiscent of the (then) astonishing
®nding about 25 years ago by Gibson (1967, 1968, 1974)
that the stresses in a half-space with G proportional to
depth and í � 1

2
are identical to those in a homogeneous

half-space. This result was surprising because, in the
words of Gibson, `it paid no regard to the well-known
doctrine that more rigid material attracts stress'. (See also
Gibson & Sills (1972)).
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in which

ar � ùr=Vs(r) (2c)

(Morse & Ingard, 1968; Bouckovalas et al., 1992).
Notice that for ù approaching 0 (static case),

equation (2) reduces to the aforementioned `cylind-
rical' solution of Randolph & Wroth (1978) and
Baguelin & Frank (1979).

RADIAL VARIATION OF MODULUS AND DAMPING:

EXPERIMENTAL DATA AND MODELLING

The variation with shear strain amplitude of the
shear modulus G � G(ã) and the hysteretic damp-
ing î � î(ã) has been studied experimentally by
numerous investigators in both cyclic (Seed &
Idriss, 1970; Richart & Wylie, 1977; Dobry &
Vucetic, 1987) and monotonic (Jardine et al.,
1984; Burland, 1989) experiments. Vucetic &
Dobry (1991) synthesized a variety of experimental
data and proposed the dashed curves plotted in
Fig. 4, where Gs is the shear modulus at low strain
levels (ã, 10ÿ5) and IP is the plasticity index of
the soil (in %).

The effect of the so-called `plasticity'� index IP

seems to be substantial. As IP increases, the ratio
G(ã)=Gs increases and î decreases. This indicates
that the soil behaviour remains essentially elastic
for increasingly larger values of shear strain as IP

increases.
The following equation was ®tted to the data of

Fig. 4 (Chrysikou, 1993):

G(ã)

Gs

� 1ÿ 2700ãc

G

Gs

� �0:72

10ÿ( IP=ë)

( )
(3)

or, in terms of the shear stress amplitude ôc(r),

G(ã)

Gs

� 1ÿ 2700
ôc0

Gs

ôc(r)

ôc0

� �0:72

10ÿ( IP=ë)

( )
(4)

in which ë is a function of the `plasticity' index:

ë � 0:002(IP)2 � 0:25(IP)� 60 (5)

The experimental curves of the variation of hys-
teretic damping with shear strain are described by
the following set of expressions:

î � 2� [18ÿ 0:08(IP ÿ 15)](1ÿ G=Gs)

if 0 < IP , 100

î � 2� 11:2(1ÿ G=Gs) if IP > 100 (6)

The good agreement between the proposed ex-
pressions and the experimental data is evident in
Fig. 4.

Inserting equation (2) for the radial distribution
of the dynamic shear stress amplitude into equation
(4), a radial variation of the shear modulus is
obtained:

G(r)
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r
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or, alternatively,

G(r)
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� 1ÿ Ë
R

r
F(ar)

� �0:72

(8)

where Ë, hereafter called the `loading intensity
factor', is

Ë � 2700
ôc0

Gs

10ÿ(1:4 IP=ë) � 2700
ôc0

f s

10ÿ1:4(IP=ë)

Gs=áSu

(9)

where f s � áSu is the frictional capacity of the
soil±pile interface, with Su being the undrained
shear strength of the soil and á the well-known
reduction factor, deduced empirically from pile
load tests, in function of the Su=ó 9v0 ratio and the
slenderness L=R of the pile (Poulos & Davis,
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Fig. 4. Comparison of proposed expressions for shear-
strain dependence of secant shear modulus and
hysteretic damping ratio (equations (3) and (6)) with
experimental design curves proposed by Vucetic &
Dobry (1991)

� The quotation marks around the word `plasticity' are to
remind one that increasing Ip increases the elasticity (not
the plasticity) of a clay.
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1980; Fleming et al., 1985; Tomlinson, 1986;
Poulos, 1988). Typical values of á for usual pile
lengths are

á � 1 for soft clays
1 .á. 0:4 for stiff clays
á � 0:4 for hard clays.

It is presently well established that the shear
modulus of a clay can be expressed as a multiple
of the undrained shear strength, in the form
Gs � çSu where typically the coef®cient ç ranges
around 1000. Recent experimental data show that ç
is also affected by the `plasticity' index. For in-
stance, Larsson & Mulabdic (1991) give the fol-
lowing expression for clays with medium to high
values of the `plasticity' index:�

Gs

Su

� 20 000

IP

� 250 (10)

Equations (9) and (10) reveal that the loading
intensity factor Ë is primarily a function of the
ratio of the induced cyclic shear stress amplitude
to the `frictional' capacity of the interface, while it
also encompasses the effect of the soil `plasticity'
index.

Figure 5 shows typical diagrams, obtained from
equation (8), for the radial variation of shear
modulus and hysteretic damping ratio, computed
for different values of the loading intensity factor
Ë and different frequency factors a0 � ùR=Vs0. It
is observed that the shear modulus and the hystere-
tic damping ratio of the soil change most rapidly
in the immediate vicinity of the pile, while at
larger radial distances they tend asymptotically to
the corresponding free-®eld values.

DYNAMIC SOIL REACTION (`SPRING' AND

`DASHPOT' FOR A PILE SLICE)

No slippage at the pile±soil interface
The governing differential equation of motion

for the vertically excited inhomogeneous layer of
unit thickness is derived from the dynamic equili-
brium of shear and inertial forces in an elemental
soil ring (Dotson & Veletsos, 1990; Gazetas &
Dobry, 1984a; Novak, 1974; Novak et al., 1978;
Veletsos & Dotson, 1988):

G
d2w

dr2
� dG

dr
� G

r

� �
dw

dr
� r @

2w

@ t2
(11)

A closed-form analytical solution to this equation
cannot be obtained if G(r) is described with equa-
tion (8). Moreover, efforts to simplify equation (8)
so that equation (11) could be solved analytically
were not successful (Michaelides & Gazetas,
1995). By contrast, solutions have been presented
for the static problem (Kraft et al., 1981; Kuwa-
bara, 1991). To overcome this dif®culty, the soil
was divided into four inhomogeneous{ ring zones
and the `exact' radial variation of shear modulus
(as given in equation (8)) was numerically curve-
®tted with the following exponential expressions:
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� r
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for r , R1

G(r) � G1
� r
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� �m1

for R1 , r , R2

G(r) � G2
� r

R2

� �m2

for R2 , r , R3

G(r) � G3
� for r . R3 (12)

in which

G j
� � Gj(1� i2î j), j � 0, 1, 2, 3

Fig. 5. Radial distribution of effective shear modulus
G � G(r), re¯ecting the fact that shear strain ampli-
tudes decrease with radial distance from the pile
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� As this article was being ®nalized, a paper was
published by Viggiani & Atkinson (1995) containing a
wealth of experimental data, relating shear modulus at
small strain levels to the mean effective stress, in the
form Gs � A(ó 9v)n. For the experimental parameter A, a
function of the plasticity index, we curve-®tted the
expression A � 25 000=Ip to their data. The similarity
to equation (10) is apparent.

{ Although a discretization of the soil medium into a
number of homogeneous ring elements could in principle
also be used, the large gradient of G(r) in the vicinity of
the pile would lead to spurious wave re¯ections due to
the unavoidable sharp discontinuity in G across the
interface of two zones.
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and Gj are the moduli at the boundaries of each
zone, given by

G1 � G0

R1

R

� �m0

G2 � G1

R2

R1

� �m1

G3 � G2

R3

R2

� �m2

where i � p(ÿ1); G0 is the shear modulus at the
pile±soil interface; î0, î1, î2 and î3 are the
material hysteretic damping at the beginning of
each zone (obtained using equations (6) and (8));
and R1, R2 and R3 (radii of the zones) and m0, m1

and m2 are functions of the dimensionless fre-
quency as � ùR=Vs (Vs being the far-®eld S-wave
velocity) and the loading intensity factor Ë (see
equation (9)). These parameters (Rj, mj) were ob-
tained by numerically curve-®tting the data of
Fig. 5.

By using the power variation of G(r) given in
equation (12), the differential equation of motion
for harmonic excitation

w(r, t) � w(r) eiù t (13)

becomes

æ2 d2w

dæ2
� (mj � 1)æ

dw

dæ
� ë j

2æ2ÿm j w � 0,

j � 0, 1, 2 (14)
where

ë j � aj=(1� 2iî), aj � ùR

Vs(r)
, j � 0, 1, 2

a0 � ùR

Vs(R)
, mj � m0, for r , R1

aj � a jÿ1

Rj

R

� �(m jÿm jÿ1)=2

,

for Rj , r , Rj�1 æ � r=R, for all zones.

(15)

Equation (14) is a generalized Bessel differential
equation, the solution of which is

w � æÿm=2[Ai H
(1)
kÿ1(kë0æ

1=k)� Bi H
(2)
kÿ1(kë0æ

1=k)]

(16)

where

k � 2

2ÿ mj

and H ( )
k is the k-order Hankel function of the ®rst

or second kind respectively (Abramowitz & Ste-
gun, 1972; Spiegel, 1971).

The boundary conditions are a (known) displa-

cement äc eiù t is imposed at the pile±soil interface,
displacements vanish as æ!1 and displacements
and stresses are continuous at the interfaces of the
four ring zones. Enforcing these boundary condi-
tions leads to a system of algebraic equations, from
which the eight complex-valued constants Ai and
Bi are determined. The complex dynamic stiffness
of the pile±soil system is then obtained:

k z � ÿ2ðG0
� dw

dæ

� �
æ�1

� 2ðG0
�ë0[A0 H (1)

k (kë0)� B0 H (2)
k (kë0)]

(17)

Equation (17) can be expressed in two alternative
forms

k z � kreal � ikimag � kz � iùcz (18)

where kz � kreal and cz � kimag=ù are the (fre-
quency-dependent) moduli of the `spring' and
`dashpot' that model the soil reaction against the
oscillating pile slice; kz re¯ects the stiffness and
(distributed) inertia of the surrounding soil, while
cz represents the radiation of wave energy away
from the pile plus the energy dissipated in hystere-
tic action in the soil (e.g. Gazetas, 1983; Gazetas
& Dobry, 1984b).

Results of the analysis are presented in Figs 6±
8. Fig. 6 portrays in dimensionless form the varia-
tion with frequency of the spring and dashpot
moduli, for different values of the load intensity
factor Ë. Recall that Gs and Vs are the shear
modulus and shear wave velocity at low strain
levels, that is, in the far ®eld (r!1). To visua-
lize better the importance of soil non-linearity, the
same results are replotted in Fig. 7, but normalized
with respect to the corresponding solution for lin-
ear soil (Ë � 0). Finally, Fig. 8 uses the results of
Fig. 6 for Ë � 0 and 0´5 to illustrate the relative
contributions of the real and imaginary parts to the
overall (complex) stiffness.

The following trends are worthy of note in these
®gures.

(a) As soil non-linearity increases with increasing
`loading intensity factor' Ë, the stiffness kz of the
pile±soil system (the spring modulus), predictably,
decreases. The rate of decrease `accelerates' with
frequency ù, especially for high Ë values. As a
result, kz becomes negative (implying a phase
difference of 1808 between pile force and displace-
ment) when both as and Ë are relatively large.
Stated in different words, the frequency factor as

at which kz crosses the zero axis decreases when
the loading factor Ë increases.

To explain this behaviour, recall that kz can be
thought of as proportional to the difference of the
(overall) shear resistance of the soil minus the
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(overall) soil inertia. An increase in frequency
leads to increased soil inertia, and thereby to
reduced kz. An increase in load amplitude leads to
larger soil non-linearity and reduced soil shear
stiffness; thus kz would also decrease. The in-
creasing (negative) role of soil inertia at high
values of loading amplitude suggests that, effec-
tively, a soil mass next to the pile vibrates almost
in phase with the pile.
(b) The dashpot modulus cz encompasses both the
hysteretic damping in the soil (prevalent at low
frequency factors as , 0:20) and the geometric
damping due to radiation of waves from the pile
periphery to in®nity (dominant at high frequency
factors as > 0:20). It is evident in Figs 6 and 7
that increasing the amplitude of the load and hence
increasing non-linearity leads to a decrease in
geometric (radiation) damping and an increase in

hysteretic damping. These are hardly surprising
observations. As the name implies, soil hysteretic
damping increases with increasing hysteresis due
to non-linearity. On the other hand, radiation of
wave energy is proportional to the S-wave velocity
in the soil, and with increasing non-linearity this
velocity would decrease in the neighbourhood of
the pile. In addition, the laterally inhomogeneous
soil wave velocity (e.g. Fig. 1(d)) leads to `con-
tinuous re¯ections' of the radially propagating
waves, thereby further undermining radiation
damping. In fact, for a linear soil with the S-wave
velocity increasing as a power of the radial
distance (Vs(r) � Vs0(r=R)m, where Vs0 is the
velocity at the interface r � R), Gazetas & Dobry
(1984a) have shown that, asymptotically, at high
frequencies, the radiation dashpot modulus be-
comes equal to 2ðRrVs0. This implies that the
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emitted very-high-frequency waves (i.e. waves of
vanishingly small wavelength) `see' the soil sur-
rounding the pile as a homogeneous medium
having velocity equal to Vs0, that is, the velocity
in the immediate vicinity of the source! In Figs 6
and 7 the reader can easily check that the above
observation also holds true here, to an excellent
degree: the high-frequency value of cz is propor-
tional to the interface velocity Vs0Ðthe latter
being a decreasing fraction of the far-®eld velocity
Vs as Ë (and hence soil non-linearity) increases.
(c) The imaginary part kimag � ùcz of the com-
plex stiffness (representing the soil reaction that is
out of phase with the imposed motion) dominates
at all but the very lowest frequency factors.

Slippage at the pile±soil interface
In the previous analysis no slippage occurred

between soil and pile. In reality, however, such
slippage will take place whenever the total shear
stress (static and dynamic) at the interface tends to
exceed the frictional capacity (`skin friction') f s.
In that case, the equivalent stiffness of the soil is
drastically reduced since, for a given force, the
displacement of the pile segment becomes larger.

The detailed effect of slippage on the non-linear
stiffness of the pile segment requires rigorous
modelling of the cyclic response of the interface
and numerical treatment, which are beyond the
scope of the very simple solution that is sought in
this paper. The aim is to gain a realistic insight
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into the phenomenon and develop an approximate
method for estimating its effect relative to the
effects of soil non-linearity discussed up to this
point. The method is illustrated conceptually in
Fig. 9. A pile slice is subjected to an initial static
displacement ä0 (typically of the order of 1

2
to 1

3
of

the yield displacement äs) followed by dynamic
loading with constant displacement amplitude �äc.
A mechanical model of soil reaction against such
pile motion is depicted in Fig. 9(a). The soil is
replaced with a non-linear spring±dashpot element
(as in Fig. 1(e)) connected to the pile, not directly
but through a frictional slider. The non-linear
spring±dashpot element is described through a
complex-valued impedance k z � kz � iùcz, which
is obtained as a function of the amplitude of the
interface shear stress ôc0 by the method developed
in the preceding section and illustrated in the plots
of Figs 6±8. The slider is essentially a rigid±
plastic element with a yield force Fs � 2ðRf s. The
`skin friction' f s is taken here for clayey soils as
áSu (see earlier discussion).

The developed method replaces (at its ®nal
stage) the initial (`real') model of Fig. 9(a) with
only a single spring±dashpot element, the imped-
ance of which,

k zs � kzs � iùczs (19)

encompasses both soil material non-linearity and
pile interface sliding. To make the analysis simpler,
the effect of slippage is decomposed into two com-
ponents, studied separately.

Effect of slippage on the reduction of spring
modulus and radiation damping. Figures 9(b), 9(c)
and 9(d) explain in a simple manner how the
complex modulus k s � ks � iùcs of a spring±
dashpot system is obtained in terms of the possible
sliding. To make the picture clear, the initial (i.e.
before sliding) force±displacement relationship is
replaced with a segment of straight line of slope k z,
that is, the complex equivalent linear modulus
before sliding.

With reference to Fig. 9, three possible modes

Fig. 8. Comparison of the relative importance of the real (kreal � kz) and
imaginary (kimag � ùcz) parts of the amplitude of the dynamic impedance
of a pile slice
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of response (in a displacement-controlled vibration)
can take place.

Mode I. The maximum displacement ä0 � äc

remains lower than the displacement äs

required to initiate slippage of the slider:
äs � Fs=jk zj, that is, the corresponding
peak external load F0 � Fc remains
lower than the yield load Fs (Fig.
9(b)). Then, the response of the pile
segment is controlled by the stiffness of
the surrounding soil, and the equivalent
elasto-plastic stiffness k s is equal to the
equivalent linear stiffness k z.

Mode II. The maximum displacement ä0 � äc

becomes larger than the displacement

äs required to initiate slippage of the
slider, but the cyclic displacement am-
plitude äc remains lower than äs (Fig.
9(c)). In this case, slippage will occur
only on the ®rst-time loading, from ä0

to ä0 � äc (branch abb9 of the loop),
while subsequent cycles of unloading
and reloading will be sustained by the
spring±slider system without further
slippage (branch b9cd of the loop). This
is achieved by a reduction of the static
force on the pile segment that counter-
balances the difference between the peak
and yield loads during ®rst-time loading.
Thus, beyond the very ®rst loading,
slippage has essentially no effect on
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possible modes with respect to sliding, for the development of the equivalent linear model (all Fÿä `curves' are
only shown to be linear for the sake of clarity of the effect of slippage)
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the response of the pile segment. Thus,
again, the equivalent elasto-plastic stiff-
ness k s is equal to the equivalent linear
stiffness k z.

Mode III. The cyclic displacement amplitude äc

exceeds the yield displacement äs (Fig.
9(d)). In this case, even a reduction of
the static load to zero during the ®rst-
time loading would not be enough to
avoid slippage. Unlike modes I and II,
slippage now occurs during all subse-
quent cycles of loading and unloading,
whenever the external load reaches the
yield limit (branches b 0b9 and cc9 of the
loop). As a result, an equivalent elasto-
plastic stiffness k s can be de®ned as the
slope of the diagonal b9c9 of the loop in
Fig. 9(d). Apparently, k s is smaller than
the equivalent linear stiffness k z.

On the basis of the geometry of the load±
displacement loop in Fig. 9(d), the relative effect
of slippage on stiffness may be approximated as

k s=k z � äs=äc (20)

or, in terms of shear stresses at the pile±soil inter-
face,

k s=k z � f s=ôc0 (21)

where f s is the skin friction and ôc0 � Fc=2ðR
denotes the cyclic shear stress amplitude that
would have developed at the pile±soil interface
had slippage not occurred.

Effect of slippage on the increase of hysteretic
damping. The above `corrections' for sliding (equa-
tion (21)) imply a reduction in both the spring and
dashpot moduli (k s � ks � iùcs). The decrease of
dashpot modulus estimated here stems from the
reduction in radiation damping, since no additional
waves are emitted from the pile during slippage. On
the other hand, slippage dissipates energy. In the
conceptual sketch of Fig. 9(d), hysteretic loss of
energy takes place during cyclic loading. In fact,
the area enclosed by the load±displacement loop
increases with the cyclic displacement increment
äc. An equivalent additional damping ratio (îes)
can be obtained from the ratio of the area of a
complete loop, ÄEh, to the equivalent elastic en-
ergy, Ees � 1

2
Fsäc, as follows:

îes � ÄEh

4ðEes

� 2

ð
(1ÿ äs=äc) (22)

The additional hysteretic dashpot modulus that
must be added to cs obtained from equation (21) is
then approximately given by

cm � 2îes ks=ù (23)

This is in addition to the dashpot modulus arising
from soil non-linearity, which is hidden in cz (and
cs). Evidently, when äc � äs this additional equiva-
lent hysteretic damping is zero, while k s � k z, in
accordance with the second mode.

Thus the resulting `total' dashpot modulus czs

either remains equal to cz (for modes I and II) or
is given (for mode III) as the sum of the moduli of
the two (in series) dashpots:

czs � cz for modes I and II

czs � cs � cm � cz f s=ôc0

� 2îes ks=ù for mode III (24a)

while the `total' spring modulus kzs is given by

kzs � kz for modes I and II

kzs � ks � kz f s=ôc0 for mode III (24b)

The resulting variations of `spring' and `dash-
pot' factors are plotted in Fig. 10 as functions of
the cyclic shear stress ratio ôc0= f s, for a low (near
static) and a high (dynamic) value of the dimen-
sionless frequency factor as, equal to 0´1 and 1
respectively. The skin friction parameter á is taken
equal to 1. As seen in this ®gure, the effect of
slippage on the spring modulus is signi®cant in
both of the cases as � 0:1 and 1. On the other
hand, for the dashpot modulus slippage is impor-
tant at high frequencies but practically unimportant
at low frequencies. These differences can be attrib-
uted to the different relative signi®cance of the
aforementioned two counteracting phenomena con-
trolling the dashpot modulus:

(a) the increase in hysteretic dampingÐin inverse
proportion to ù according to equation (23)

(b) the decrease in radiation dampingÐnearly
independent of ù.

Thus, whereas at low frequencies phenomenon
(a) is still signi®cant and its effect may oversha-
dow phenomenon (b), at high frequencies phenom-
enon (a) becomes insigni®cant and phenomenon
(b) dominates. For a simple proof of this explana-
tion, the dashed lines in Fig. 10 represent the
dashpot modulus when the additional hysteretic
damping (cm) is ignored. Indeed, at high frequen-
cies (where hysteretic damping is insigni®cant) this
has practically no effect on the dashpot modulus,
whereas at low frequencies the effect is substantial,
increasing with the amplitude of ôc0= f s.

DYNAMIC STIFFNESS OF THE WHOLE PILE

The dynamic spring and dashpot moduli ob-
tained for a pile slice in the preceding paragraphs
are used in the analysis of a vertically vibrating
single pile, in the Winkler-type model sketched in
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Fig. 11. For harmonic steady-state oscillation of
the pile,

ä(z, t) � äc(z) eiù t (25)

dynamic equilibrium of a pile element yields

Ep Ap

d2äc(z)

dz2
ÿ (kz � iùcz ÿ mù2)äc(z) � 0

(26)

where Ep and Ap are the Young's modulus of
elasticity and cross-sectional area of the pile, and
m is the mass of the pile per unit length. The
general solution is

äc � A1 eDz cos (è=2) eiDz sin (è=2)

� A2 eÿDz cos (è=2) eÿiDz sin (è=2) (27a)

where

D � (kz ÿ mù2)2 � (ùcz)
2

(Ep Ap)2

" #1=4

è � arctan
ùcz

kz ÿ mù2
(27b)

(see e.g. Makris & Gazetas, 1993).
Equation (27) is an implicit relation, since äc is

given as a function of kz and cz, which in turn
depend on äc(z). Iterations are therefore needed to
derive the solution. It is instructive in this respect
to study the following two cases separately.

Flexible piles
For the general case of a ¯exible pile embedded

in layered soil, where shear stresses vary along the
pile, an iterative method is followed to account for
the effect of soil non-linearity. For each pile slice,
the integration constants A1 and A2 (equation (27))
are computed by enforcing the continuity of stres-
ses and displacements along the pile axis. More-
over, at the top of the pile

ä(0, t) � äc(z � 0) eiù t (28)

while at the pile tip
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radiation damping due to slippage
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Pb � ÿEp Ap

dä(z, t)

dz

� �
z�L

(29)

where Pb is the developing harmonic force at the
tip (z � L) of the pile. Pb is related to the resulting
pile tip displacement äc(z � L) through the dy-
namic stiffness Sb of the pile base. Accepting the
arguments of Randolph & Wroth (1978) and Scott
(1981), it is assumed that Sb is approximately
equal to the dynamic stiffness of a circular footing
on the (underlying) homogeneous half-space:

Sb � Pb=äc(z � L) � 4Gb R

1ÿ íb

� iùðR2rb(VLa)b

(30)

in which Gb, (VLa)b, íb and rb are the shear
modulus, `Lysmer's analogue' wave velocity, Pois-
son's ratio and the mass density of the soil below
the base of the pile. VLa is related to the S-wave
velocity (Gazetas & Dobry, 1984a,b):

VLa � 3:4

ð(1ÿ í)
Vs (31)

In the ®rst iteration, the shear stresses along the
pile shaft are computed using the linear spring and

dashpot expressions (Makris & Gazetas, 1993;
Makris & Makris, 1991):

kz,linear � 0:60Es(1� 1
2

p
as)

cz,linear � 1:20aÿ1=4
s ðdrsVs � 2îkz=ù (32)

Then equation (27) gives the complex-valued dis-
placement amplitude äc(z). The shear stress ampli-
tude ôc0(z) is obtained from

ôc0(z) � 1

2ðR
jk z,linear(z)äc(z)j (33)

where the vertical bars indicate the absolute value
of the complex number. The parameter Ë � Ë(z)
is then calculated (equation (9)) and a new set of
`non-linear' springs is obtained, using the proposed
method (slippage is taken into account by replacing
k z with k zs, as described previously). The process
is repeated until a reasonable convergence of shear
stresses is achieved.

Rigid pile
For the special case of a rigid cylindrical pile

and uniform soil properties with depth, a force
equilibrium method can be followed. Since the pile
is rigid the displacement amplitude is constant
along the pile, that is,

äc(z � 0) � äc(z � L) � äc(z) � äc (34)

The applied force at the head of the pile is equal
to the sum of the total force Ps at the pile shaft,
the force Pb at the pile tip and the pile inertial
force Pin. This force equilibrium can be written as:

Pc � Ps � Pb � Pin (35)

where the time factor eiù t, common to all force
components, has been omitted, and

Ps �
� L

0

(kz � iùcz)äc dz � (kz � iùcz)äc L (36)

Pb � Sbäc (37)

and

Pin � ÿmLù2äc (38)

m being the mass per unit length of the pile.
The dynamic stiffness of the pile is ®nally given

by the relationship

K v � Pc eiù t

äc eiù t
� Sb � (kz � iùcz ÿ mù2)L (39)

If the pile is subjected to a known äc, equation
(39) can be used to obtain directly Pc or K v, once
kz � kz(äc) and cz � cz(äc) have been determined.
Iterations, however, will be needed in a force-
controlled excitation.
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Fig. 11. Winkler model for a vertically vibrating pile
(from Makris & Gazetas, 1993)
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COMPARISONS AND PARAMETRIC RESULTS

Non-linear static response of a pile in Mexico City
clay

The method developed here is compared with
experimental results from a quasi-static test con-
ducted in Mexico City (Trochanis et al., 1991a,b).
In this test a 0´3 m wide, 15 m long, square con-
crete pile was axially loaded in a clay with un-
drained shear strength Su � 40 kPa, Poisson's ratio
� 0´45 and shear modulus Gs � 6800 kPa, and
with a plasticity index in the region of 200 (typical
of the Mexico City clay). Fig. 12 plots the force±
displacement relationships from the ®eld test, the
proposed method and a non-linear ®nite element
analysis (Zha, 1995). The agreement of the present
method with the in situ measurements and the
more rigorous analysis is satisfactory.

Distribution of stress=force with depthÐ
comparison with other solutions

The validity of the proposed method is further
checked in Figs 13±16 against results from Poulos
& Davis (1980). Speci®cally, Fig. 13 shows that,
under elastic conditions, the frequency of the ap-
plied load has practically no effect on the distribu-
tion with depth of the shear stress on the pile
shaft, for an extreme range of Ep=Es ratios. The
agreement with the Poulos & Davis curves is clear
in this ®gure. On the other hand, frequency does
affect the shear stress distribution and generally
plays a more signi®cant role as the applied load
increases and non-linear conditions are established;
a demonstration is given in Fig. 14 for the case of
a medium-intensity load Pc=Pu � 0:25. In Fig. 15
the distribution with depth of the axial force
N � N (z) is shown for different base conditions.

Measured

Finite element analysis

Ip 5 150

Ip 5 200
Present method

600

400

200

0
0.020 0.04

Mexico City clay

Gs 5 6800kPa, Su 540kPa, Ep5 2 3 107 kPa
L 5 15m, d 5 0.34m

w: m

P
: k

N

Fig. 12. Veri®cation of the proposed method with real
data (full-scale experimental results in Mexico City
clay: Trochanis, 1991a,b) and with a more rigorous
analysis (®nite element analysis results: Zha, 1995)
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The force transmitted to the lower part of the pile
increases with Eb, the soil modulus of elasticity at
the tip level. The good agreement with the curves
given by Poulos & Davis (1980) is again evident.
On the other hand, Fig. 16 shows that the distribu-
tion of shear stresses along the pile shaft becomes
increasingly uniform with increasing intensity of
the applied load.

Effect of non-linearity on pile-head stiffness and
damping

To illustrate the effect of the level of the applied
load and the `plasticity' index of soil on the stiff-
ness and damping of a pile, we consider a concrete
pile 0´64 m in diameter and 16 m long, embedded
in a homogeneous clay with Es � 20 MPa. Fig. 17
shows, in dimensionless form, the load±displace-
ment curves for as � 0:1 and 0´5. Both real and
imaginary parts of the displacement are plotted to
illustrate the relative contribution of each compo-
nent in the resulting displacement. For as � 0:1
(near-static case) the real part (in-phase compo-
nent) of the response dominates, while the imagin-
ary part (out-of-phase component) becomes sig-
ni®cant only at high values of frequency (as �
0:5): Notice that the amplitude of the complex
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impedance, given by the slope of the `amplitude'
curve, increases with frequency. This is the result
of a signi®cant increase in radiation damping.

Figures 18 and 19 illustrate the effect of the
magnitude of the applied load and soil `plasticity'
index on the dynamic impedance at the pile head
(given in the form K v � Kv � iùCv). Speci®cally,
Fig. 18(a) plots the variation of pile stiffness as a
function of as for different values of the level of
the applied load; the latter is normalized by Pu,
the ultimate static axial load of the pile. The
substantial in¯uence of non-linearity on the pile
stiffness is obvious for the whole range of frequen-
cies. However, this effect becomes more signi®cant
at high values of the frequency factor as: On the
other hand, the damping ratio plotted in Fig. 18(b)
is affected by the level of non-linearity to a gen-
erally lesser degree. For large frequencies the value
of Cv tends to

Cv � 2ðRLrVs(R) (40)

which corresponds to the value of Cv for a pile
surrounded by soil with a constant value of S-wave
velocity equal to the Vs(r � R) value. In other
words, radiation damping decreases in proportion
to the decrease in the effective S-wave velocity
next to the pile (at r � R). This trend is qualita-
tively similar to the trend observed earlier for
the dynamic impedance of the pile slice (Figs 6
and 7).

In Fig. 19 the effect of the soil `plasticity' index
is examined for two cases, Ip � 30 and Ip � 100.
It is concluded that with increasing Ip, the soil
remains increasingly elastic and hence homoge-
neous for large values of the applied load. It
should be noted, however, that for the same shear
strength Su, the soil modulus Es (or the S-wave
velocity at small strains Vs) will be larger as Ip

decreases, as, for instance, described by equation
(10). As a result, the elastic (linear) stiffness of the
soil, and hence of the pile, will be reduced for
increasing Ip.

CONCLUSIONS

An axially oscillating pile induces shear strains
in the surrounding soil, the amplitude of which
attenuates radially away from the pile. In the
vicinity of the pile such strains can be large
enough to cause non-linear cyclic response of the
soil. This paper has developed an equivalent linear
method to approximate such a non-linear response.
To this end, linear elastic theory has provided
amplitudes of shear stresses and shear strains as
functions of the radial distance r from the pile.
Used in conjunction with published experimental
data (in the form of secant shear modulus and
damping ratio functions of cyclic strain amplitude
and soil `plasticity' index), the radial distribution
of strains was translated into an equivalent shear
modulus G, increasing monotonically and continu-
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ously with r, from a value of G0 at the pile±soil
interface to the maximum (zero-strain) modulus Gs

in the free ®eld, that is, outside the zone of in¯u-
ence of the pile. Thus, a linear but radially inho-
mogeneous medium replaced the actual non-linear
but radially homogeneous soil, allowing analytical
derivation of the soil reaction (both the in-phase
`spring' and the out-of-phase `dashpot' compo-
nents) against the pile periphery at the particular
depth. A simple experimentally motivated approx-
imation was developed to account for slippage at
the pile±soil interface. The response of the whole
pile could, in general, only be obtained iteratively.

Despite several simplifying approximations, the
method seems capable of capturing the key aspects
of the non-linear dynamic response. Parametric
results have shown that increasing the amplitude of
the applied load reduces the stiffness and radiation
damping of the system while increasing the hys-
teretic damping. The signi®cance of non-linearity
increases with increasing frequency of pile oscilla-
tion, while it decreases with increasing soil `plasti-
city' index. On the other hand, frequency has a
rather minor effect on the distribution of the axial
force along the pile.

It is ®nally noted that the developed method
can utilize experimental data other than those of
Vucetic & Dobry (1991) (shear modulus and
damping against strain curves) that have been used
in this article.
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APPENDIX 1. SHEAR STRESSES INDUCED IN

RADIALLY NON-HOMOGENEOUS ELASTIC MEDIA
It is shown below that the radial distribution of (cyclic)

shear stress given in equation (2) is quite insensitive to the
exact radial variation of shear modulus G � G(r). To this
end, the shear modulus is taken to vary as follows:

G(r) � G(r0)f1� i2î(R)g r

R

� �m

(41)

For harmonic excitation, the solution of the differential
equation of motion (equation (11)) yields

w � Bw

r

R

� �ÿm=2

H (2)
k kë0

r

R

� �1=k
 !

(42)

where Bw is a constant of integration that can be
determined from the boundary conditions, H (2)

k is the
Hankel function of the second kind of order k,

k � 2

2ÿ m

ë0 � ùR
r

G(R)[1� i2î(R)]

and r is the mass density.
The shear stress is then given by

ôc(r) � G(r)
dw

dr
(43)

and the following cases can be investigated, starting with
the radially homogeneous case and moving to increasingly
inhomogeneous pro®les:

Radially homogeneous soil ( m � 0,î � 0) with shear
modulus equal to the shear modulus at the pile±soil
interface

The radial distribution of shear strength is given by
equation (1) and approximately by equation (2).

Soil with shear modulus increasing as the 2
3

power of r
(m � 2

3
,î � 0)

The resulting differential equation was solved by
Gazetas (1982) for the (mathematically similar) case of
a vertically inhomogeneous earth dam, and by Gazetas &
Dobry (1984a) for a strip footing. The solution is

w � Bw

r
4

3ðë0

� �
r

R

� �ÿ2=3

3 sin
3

2
ë0

r

R

� �2=3
 !

� i cos
3

2
ë0

r

R

� �2=3
 !" #

(44)

from which

ôc(r)

ôc0

� r

R

� �ÿ1=3

3

s a2
0 �

4

9

r

R

� �ÿ4=3

a2
0 �

4

9

0BBB@
1CCCA (45)

Soil with shear modulus proportional to r ( m � 1, î � 0)
The ratio ôc(r)=ôc0 is given by

ôc(r)

ôco

� r

R

� �ÿ1=2

s
[J1(t)ÿ a0

r

R

� �1=2

J0(t)]2 � [Y1(t)ÿ a0

r

R

� �1=2

Y0(t)]2

[J1(t�)ÿ a0 J0(t�)]2 � [Y1(t�)ÿ a0Y0(t�)]2

0B@
1CA

(46)

in which

t � 2a0

r

R

� �1=2

and t� � 2a0

Fig. 20 compares the radial variations of shear stress for
the above three cases, m � 0, m � 2

3
and m � 1; also

plotted is the approximate (asymptotic) equation (2).
The agreement between the two sets of results con®rms

the insensitivity of the radial variation of shear stress to
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the radial distribution of shear modulus, especially for the
most interesting range of low a0 values (a0 , 0:5).

At high frequencies (a0 . 0:5) the radial distribution of
shear modulus does affect ô(r). This could be attributed to
the fact that for large values of the applied frequency, the
short-wavelength waves emitted from the pile `see' almost
only the area next to the pile; as a result, the gradient of
G(r) in this area (which varies signi®cantly for the three
G(r) functions studied) greatly affects the distribution of
ô(r). For this case, a more accurate approach would be to
obtain ôc(r) iteratively. Nevertheless, the proposed simpli-
®ed expression is very close to the most realistic of the
three studied distributions, namely the one with m � 2

3
.

Therefore in view of the several other approximations of
the present method, such iterations are not considered
necessary.

NOTATION
a0 ùR=Vs0

Ap pile cross-sectional area
ar ùr=Vs(r)
as ùR=Vs

cm îes2ks=ù � additional hysteretic dashpot
modulus due to slippage

Cv pile-head dashpot modulus in axial loading (�
imaginary part of K v=ù)

cz `dashpot' modulus
d pile diameter

Ep pile modulus of elasticity
F0 2ðRô0(R) � static load applied on pile slice

(per unit length)
Fc 2ðRôc0 � amplitude of cyclic load applied on

pile slice (per unit length)
f s frictional capacity of soil±pile interface

Fs 2ðRf s � yield load of the pile±soil interface
(per unit length)

G G(r) � shear modulus of soil at radial distance
r

G0 shear modulus of soil at r � R (i.e. at the pile±
soil interface)

Gs shear modulus of soil in the far ®eld (i.e. at
very low strain levels)

Ip plasticity index of soil
i
p

(ÿ1)
kimag ùcz � imaginary part of k z

kreal kz � real part of k z

k s ks � iùcs � elasto-plastic complex dynamic
impedance accounting for the reduction of
spring modulus and radiation damping due to
slippage

Kv pile-head dynamic stiffness modulus in axial
loading (� real part of K v)

K v Kv � iùCv � complex pile-head dynamic
impedance in axial loading

kz `spring' modulus
k z kz � iùcz � complex dynamic impedance of

the pile slice
k zs kzs � iùczs � equivalent elasto-plastic complex

dynamic impedance
L pile length
m mass of pile per unit length

Pb force at the pile tip
Pc amplitude of the sinusoidal applied axial

dynamic load
Pin inertial force of the vibrating pile
Ps total force at the pile shaft
PU ultimate axial static load

R pile radius
r radial distance from the pile axis
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Fig. 20. Variation of shear stress amplitude with radial distance r, for different
radial distributions of shear modulus G � G(r), ranging from radially
homogeneous (m � 0) to strongly inhomogeneous with modulus proportional
to r (m � 1)
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Sb dynamic impedance (stiffness and damping) at
the pile base

Su undrained shear strength of the soil
VLa `Lysmer's analogue' wave velocity

Vs(r) shear wave velocity of soil at radial distance r
Vs shear wave velocity of soil in the far ®eld (i.e.

at very low strain levels)
Vs0 Vs(R) � shear wave velocity of soil at r � R

(i.e. at the pile±soil interface)
w w(r) � amplitude of axial displacement of soil

at radial distance r
á `skin friction' parameter ( f s � áSu)
ãc ãc(r) � amplitude of cyclic shear strain

corresponding to ôc(r)
ä(z, t) cyclic displacement of pile segment at depth z

ä0 initial (static) displacement of pile segment
äc äc(z) � amplitude of the cyclic displacement of

pile segment at depth z. If no slippage occurs
äc � w(R)

äs Fs=k z � displacement of pile segment required
to initiate slippage

Ë loading intensity factor (de®ned in equation
(9))

î hysteretic damping factor of soil
îes additional hysteretic damping ratio due to

slippage
rb mass density of soil below the base of the pile
ó 9v0 mean effective vertical stress
ô0 ô0(r) � static shear stress on soil element at a

radial distance r
ôc ôc(r) � amplitude of cyclic shear stress on soil

element at a radial distance r
ôc0 ôc(R) � amplitude of the imposed cyclic shear

stress at the pile±soil interface (if ôc0 . f s then
ôc0 is the amplitude of shear stress that would
have developed if no slippage occurred)

ù frequency of the applied dynamic load
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